NUWC-NPT Technical Report 10,760
5 May 1997

Performance of Power-Law Processor
with Normalization for Random
Signals of Unknown Structure

Albert H. Nuttall

Surface Undersea Warfare Directorate

19970714 040

Naval Undersea Warfare Center Division
~ Newport, Rhode Island

Approved for public release; distribution is unlimited.



PREFACE

The work described in this report was sponsored by the
Independent Research (IR) Program of the Naval Undersea
Warfare Center (NUWC), Division Newport, under Project No.
B100077, “Near-Optimum Detection of Random Signals with
Unknown Locations, Structure, Extent, and Strengths,” principal
investigator Albert H. Nuttall (Code 311). The IR program is
funded by the Office of Naval Research; the NUWC Division
Newport program manager 1s Stuart C. Dickinson (Code 102).
This research was also sponsored by the Science and Technology
Directorate of the Office of Naval Research, Ronald Tipper (ONR-
322B).

The technical reviewer for this report was Stephen G.
Greineder (Code 2121).

Reviewed and Approved: 5 May 1997

e e

Patricia J. Dean
Director, Surface Undersea Warfare



Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0788

Puplic reporting turden for this cotlection of Information s estimated 10 average | nour per response, incivcing the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the ssliection of informaticn. Send comments regarding this burden estimate or any other aspect of this
Collection of information, including suggestions for reducing this burcen. 1o Nashington Headcuarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Surte 1204, Arlington, VA 22202-4302. and to the Office of Management and Budget, Paperwork Reduction Project (7C4-0188), Washington, DC 205C3.

1. AGENCY USE ONLY (Leave blank) |2. REPORT DATE "3, REPORT TYPE AND DATES COVERED

5 May 1997 Progress
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Performance of Power-Law Processor PE 0601152N

with Normalization for Random Signals
of Unknown Structure

6. AUTHOR(S)

Albert H. Nuttall

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
e REPORT NUMBER
Naval Undersea Warfare Center Division NUWC-NPT TR 10,760

1176 Howell Street
Newport, Rhode Island 02841-1708

3. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING

Office of Naval Research AGENCY REPORT NUMBER
800 North Quincy Street, BCT 1
Arlington, VA 22217-5000

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release;
distribution is unlimited.

13. ABSTRACT (Maximum 200 words)

A signal (if present) is located somewhere in a band of
frequencies characterized by a total of N search bins, along with
uniform noise of unknown level per bin, N. The signal occupies an
arbitrary set of M of these bins, where not only is the extent M
unknown, but, in addition, the locations of the particular M bins
occupied by the signal (if present) are unknown. Also, the average

signal level in an occupied bin, S, is arbitrary and unknown.

In order to realize a specified false alarm probability, the
power-law processor has been normalized by division with an estimate
of the noise level, either from a noise-only reference or from the
measured data itself. Various combinations of normalizer forms have
been investigated quantitatively through their receiver operating
characteristics.

14. SUBJECT TERMS 15.f8%lBER OF PAGES

Detection Random Signals .
Power—-Law Processor Noise-Only Reference
) 16. PRICE CODE
Normalizer Self-Reference
17, SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION |19. SECURITY CLASSIFICATION |20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified SAR
NSN 7520-01-280-5500 Stardard Form 298 (Rev. 2-89)

Prescrioed by ANSE Sid Z239-78
298.122




UNCLASSIFIED
SECURITY CLASSIFICATION
OF THIS PAGE

It has been found that if the number of bins, M, occupied
by the signal is small relative to the search size N, the
additional signal-to-noise ratio required by the normalizer,
in order to maintain the standard operating point, is not
significant. However, if M is of the order of N/4 or larger,
the degradations begin to become substantial. A partial
remedy for the inherent losses caused by an unknown noise
level is the use of a noise-only data reference, if available.
However, eventually, as M increases and tends to N, the
detection situation becomes progressively more difficult,
finally becoming impossible. This is not a limit of the
normalized power-law processor, but, rather, of the fact that
detection of a white signal in white noise of unknown level is
a theoretical impossibility.

A major problem arises with some signal processor forms
when the background noise level is unknown. Namely, the
actual false alarm probability realized in operation is
unknown. Although the receiver operating characteristics of a
particular near-optimum processor (such as the power-law
processor) may indicate that good detectability performance is
achievable, the actual operating point will be unknown.
Changing the decision threshold may slide the operating point
along a good receiver operating characteristic, but the
precise location being utilized will be unknown. The
normalizer forms suggested here remedy this limitation for the
power-law processor by guaranteeing a prespecified false alarm
probability, although at the (unavoidable) expense of a slight
loss in detectability.

UNCLASSIFIED
SECURITY CLASSIFICATION
OF THIS PAGE




NUWC-NPT TR 10,760

TABLE OF CONTENTS

LIST OF TABLES . . « « ¢ « o o o o o « o o o « =

LIST OF ACRONYMS AND SYMBOLS . . . . . « « « =« =

INTRODUCTION

. . - . . . . . - . - . . . - . . -

PROBLEM DEFINITION . . . =« « o « ¢ « o o o o =« =

-

.

.

.

-

Probability Density Functions of Individual Bin Outputs.

Alternative Processor FOrms. . . . « « « =« =

NORMALIZER FORMS . . =+ ¢ « ¢ o o o o o o o o o =
Different Sample Averages. . . . « « « .« .+ =«
Noise-Only Reference for Normalization . . .
Self-Reference for Normalization . . . . . .

PERFORMANCE RESULTS. . ¢« « « ¢ « o o o o o o o =«
Small M Values . . . . . . < . o ¢ ¢ o o . -

Number of Signal Bins M = 256. . . . . . . .

Noise-Only Reference for Normalization . . .
SUMMARY. . « ¢« « o o o o o o o o o o o o « o o =
APPENDIX A — OPTIMUM PROCESSOR FOR COLORED NOISE
APPENDIX B — DERIVATION OF APPROXIMATE BAYESIAN PROCESSOR.
APPENDIX C — ANALYTIC DERIVATIONS OF FALSE ALARM PROBABILITY
APPENDIX D — RECEIVER OPERATING CHARACTERISTICS
FOR NORMALIZER (14) . . . . . . . .
APPENDIX E — LIMITING NORMALIZER AS ¢ - V. . . .
APPENDIX F — RECEIVER OPERATING CHARACTERISTICS
FOR NORMALIZER (16) . . . . . . . .
APPENDIX G — RECEIVER OPERATING CHARACTERISTICS

REFERENCES .

FOR NORMALIZER (17) . . . . . . . .

. . . - . - . . . - . - - . . . . .

Page

. 19




Table

CFAP
PLP
ROC
SNR

SOP

et e 1B =

(=

Required SNR
Reqguired SNR
Required SNR

Required SNR

(dB)
(dB)
(dB)

(dB)

NUWC-NPT TR 10,760

LIST OF TABLES

for

for

for

for

Normalizer
Normalizer
Normalizer

Normalizer

(14)
(16)
(17)
(17)

with u

with u

LIST OF ACRONYMS AND SYMBOLS

Constant False Alarm Probability

Power—-Law Processor

Receiver Operating Characteristic

Signal-to-Noise Ratio

Standard Operating Point

Total number of search bins

Page

16

22

23

Actual number of bins occupied by signal (when present)

Power law

Size of noise-only reference data (if available)

Average noise level per bin

Hypothesis Hy, signal absent

Hypothesis Hy, signal present

Actual set of bins occupied by signal

Average signal level in an occupied bin

Random variable

ii




X(v,N)

{Z,\}

Z(w,L)

NUWC-NPT TR 10,760
LIST OF ACRONYMS AND SYMBOLS (Cont’d)

Output or observation of n-th bin

Probability density of X, under hypothesis Hy
equation (1)

Probability density of X under hypothesis Hy,
equation (2)

False alarm probability

Detection probability

Fixed threshold, equations (6), (11), (13)

General sample average for data {xn}, equation (7)
Set of noise-only measurements, equation (11)

Size of set {ZR}' equation (11)

Sample average for set {ZX}’ equation (11)
Power—law used in Z(wx,L), equation (1l1)

Sum of data {xn} to the v-th power, equation (15)

iii/iv
Reverse Blank




NUWC-NPT TR 10,760

PERFORMANCE OF POWER-LAW PROCESSOR WITH NORMALIZATION
FOR RANDOM SIGNALS OF UNKNOWN STRUCTURE

INTRODUCTION

In a series of technical reports (references 1-5), the
performance of the power-law processor (PLP) for detection of
random signals of unknown locations, structure, extent, and
strengths has been quantified in terms of its receiver operating
characteristics (ROCs) for a wide range of parameter values, such
as the size of the search region, N; the number of bins occupied
by the signal, M; the power-law v; and the signal-to-noise ratio
(SNR) per bin. However, all of these investigations presumed
that the average background noise level was flat and known, and
therefore, it was normalized to unit level, without loss of
generality.

For completeness and reference, the optimum processor in
colored noise is derived here and found to depend on signal and
noise parameters that are not likely to be known in practical
applications (see appendix A). However, even if the noise powers
in each and every search bin were known, they would have to be
utilized in an impractical massive search over all contingencies.
The impossibility of knowing all this noise level information, in
addition to the astronomical number of computations that must be
made, forces consideration of simpler alternatives, of which the
PLP again emerges as the most reasonable practical processor.

The particular power law v is again left as a control parameter
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that the user can manipulate in order to maximize detection
performance.

A major problem with these processor forms is that since the
noise levels per bin are unknown in practice, the actual false
alarm probability realized in operation is unknown. Although the
ROCs of a particular PLP may indicate that good detectability
performance is achievable, the actual operating point will be
unknown. Changing the decision threshold may slide the operating
point along a good ROC, but the precise location being utilized
will be unknown.

In practice, when the average noise background is flat (or
assumed flat) but of unknown level, it must be estimated and then
used to select a threshold corresponding to the false alarm
probability of interest. This fluctuating estimate of the noise
level naturally degrades the performance of the resultant
processor. Here, the losses associated with this estimation
procedure, called normalization, will be quantitatively
investigated in terms of the ROCs for a variety of different
procedures and pertinent parameter values. The average signal
powers in the occupied bins are assumed to be equal, although
their level and occupancy pattern are unknown. The case of
unequal signal powers per bin and known noise level did not
display a strong dependence on the particular signal power set
(reference 5).

Two noise-level estimation procedures will be considered,

namely, the noise-only reference and the self-reference. 1In the
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former case, it is presumed that a collection of L measurements,
known to consist of noise only, with the same (but unknown)
average noise level as the potential signal samples, is available
from which to estimate the noise level. This collection can be
larger or smaller than the size N of the separate search space in
which the signal is expected to reside when present. The fact
that the estimated noise level fluctuates about the true value
causes a degradation in performance relative to the known noise
level case. This loss is unavoidable in an environment of
unknown noise level.

On the other hand, in the self-reference case, no such
noise-only set is available, and only the measured data (which
may or may not contain a signal) must be used to establish a
noise level reference. These circumstances tend to be self-
defeating, because the signal (when present) biases the noise
level estimate and because the finite average inherently
fluctuates, both of which effects obscure some weak but valid
signal contributors. Nevertheless, the need to operate in such
an environment occurs frequently enough in practice that this
self-reference procedure must be investigated and the losses
assessed quantitatively.

The investigation of an unknown flat noise level begins with
the derivation of an approximate Bayesian processor. The unknown
noise level is assigned a prior density, as propounded in
réference 6, chapter 2; in particular, this procedure is

recommended for cases where there is insufficient knowledge of
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the pertinent parameters of the signal processing problem of
interest. However, numerous assumptions and approximations are
required to conduct the manipulations, as shown in appendix B.
Adopting this procedure leaves open the possibility for numerous
modifications of the basic processing technique, allowing both
for simplicity in the data processing, as well as for possible
performance gains.

The performances of the noise-only reference and the self-
reference procedures, based upon the suggested form of the
Bayesian processor, are evaluated by means of their ROCs. These
procedures lead naturally to a more general form of normalizer
for the self-reference cases, which is thoroughly investigated
for a wide range of parameter values. The corresponding ROCs are

collected in the appendixes of this report for future reference.
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PROBLEM DEFINITION

The search space consists of N (frequency) bins, each
containing independent, identically distributed noises of unknown
average level N under hypothesis Hy, signal absent. The number
of bins N is under the user’s control and is always a known
quantity. When signal is absent, the probability density
function of each of the N bin output noises is known, except for
absolute level N.

When signal is present, hypothesis Hy, the quantity M is the
actual number of bins occupied by the signal; most often, this is
an unknown parameter. The quantity L is the actual set of bins
occupied by signal components when a signal is present; for
example, if M = 4, then L might be {2,3,7,29} for the occupied
set, meaning that bins 2,3,7,and 29 have signal in them. This
quantity L is always unknown in these investigations. Finally,
the quantity S is the actual average signal level in each of the
occupied bins in set L when a signal is present; this average
signal level S is unknown in practice.

Nothing is presumed to be known about the received signal
structure, such as whether or not it is deterministic; rather,
the signal is taken to be random with no known structure. Thus,
for example, the signal is not presumed to be a collection of
harmonics of unknown fundamental frequency, nor must the signal
occupy a contiguous band of frequencies of unknown bandwidth
and/or center frequency. Instead, the signal is allowed to
occupy M bins of the search band of N bins in an unspecified

(nonoverlapping) independent random manner.
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PROBABILITY DENSITY FUNCTIONS OF INDIVIDUAL BIN OUTPUTS

The detailed character of the two probability density
functions of the available bin data, namely, dp and dq - is now
specified under hypotheses H and Hy, respectively. 1In both
hypotheses, the bin outputs or observations {xn}, 1 {n <N, are
taken as the squared envelopes of the outputs of (disjoint)
narrowband filters subject to a Gaussian random process
excitation; alternatively, the observations can be interpreted as
the magnitude-squared outputs of a fast Fourier transform subject
to a Gaussian process input. It is assumed that these magnitude-
squared bin outputs, that is, random variables {xn}, are
statistically independent of each other, which is consistent with
the frequency-disjoint requirement and a Gaussian process
excitation.

Since the bin output average noise level is N, the ‘

probability density function of the n-th observation X is,
under hypothesis HO’ an exponential of the form
1 Yn
qo(un) =N exp(— ﬁ—) for u, > 0, 1 <n<KN. (1)

On the other hand, when signal is present, hypothesis Hy
the density of output X, for this bin occupied by the m-th

signal with bin output average signal level S is changed to

-u
n
5 exp(N n §J for u, > 0, nelL . (2)

The signal-to-noise ratio per bin is S/N.
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ALTERNATIVE PROCESSOR FORMS

For known levels N and S, the optimum processor is derived in
appendix A, with the end result for the likelihood ratio given by
equations (A-7)-(A-9). A series of necessary practical
approximations reduces this general result to the standard

power-law processor (A-14), namely, threshold comparison

2|

N v o>
> . X < Ty v (3)
n=1

where power-law v is a control parameter to be optimized by the
user and Ty is a fixed threshold. Previous analyses of this
processor (references 1-5) have revealed that its ROCs lie within
a small fraction of a decibel from the optimum processor (A-7) if
signal extent M is known. On the other hand, when M is unknown,
power-law choice v = 2.4 performs within 1.2 dB of the optimum,
regardless of the actual unknown value of M. These conclusions
are based upon noise and signal models (1) and (2).

When search size N and power-law v are specified in equation
(3), the false alarm probability Pe can be calculated for a given
threshold Ty, provided that average noise level N is known.
Conversely, for a specified Pe, the required threshold T, can be
determined, but, again, only if average noise level N is known.

An equivalent form for processor (3) is
1 N v > 1/v
Fii=) me=m=vyu, W

where T, is a fixed threshold directly proportional to the
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average noise level N. That is, scalar Vs is dimensionless,
because the left-hand side of equation (4) is linearly
proportional to N. The processor in equation (4) has the same
ROCs as in equation (3), because a monotonic nonlinear
transformation of a decision variable does not affect the ROCs.

Finally, an alternative form to equation (4) is

where the right-hand side is a fixed threshold, independent of N.
This form suggests that when average noise level N is unknown, an
estimate of it should be used in the denominator of the left-hand
side, while the right-hand side is kept fixed.

The problem of deriving the optimum processor for unknown
signal and noise levels is undertaken in appendix B, where the
use of prior densities in a Bayesian approach is employed.
Several assumptions and approximations must be adopted to make
significant analytic progress in the derivation of the likelihood
ratio, culminating in equation (B-15). Finally, an approximation

to the likelihood ratio yields the final form (B-18), namely,

where v is a fixed threshold. Remarkably, this form is similar

to that suggested by form (5), where noise level N was known.
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NORMALIZER FORMS
DIFFERENT SAMPLE AVERAGES

Before the normalizer forms that will be considered here are
specified, it is worthwhile to examine the potential of a general

sample average. Consider the random variable

For v = 1, X(1,N) is the sample mean of the observed data {xn}.
For v = 2, X(2,N) is the sample root-mean-square value of {xn}.
For v = ©», X(»,N) is the maximum of the data set, max{xl,...,xN}.

For v = -1, X(-1,N) is the sample harmonic mean:

N o1
X(-1,N) = N E - (8)
n=1 “n

Finally, as v » 0+, the sample geometric mean is obtained as

follows:
N 1/v N 1/v
1 ~ (1
X(v,N) = |= E exp(v 1lnx ) = |= E (1 + v 1Inx_) =
(N n=1 n J (N n=1 n ]
N 1/v N N
= > = 1 = 1 =
= (1 + N %:1 1nan = exp(N ;=1 1nxn) = exp[N 1nl=ixn) =

Xe]

N 1/N
= [T_Tx ] as v > 0+ .
n

With regard to the number of data samples, N, the limiting

value of equation (7) is
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—\1/v
X(v,®) = [x”) = £(v) N under H

0 (10)

0’
where function £(v) is independent of N. Thus, X(v,N) is a
stable scaled estimate of the average noise level N, when sample
size N is large.

It is seen that general sample average X(v,N) defined in
equation (7) encompasses a wide variety of forms. However,
regardless of the value of v, X(v,N) has the same dimensions as
data {xn}. Also, a common scaling of the data according to
{a xn} yields scaled sample average a X(v,N). The data
processing in equation (5) can now be expressed simply as
X(v,N)/N, whereas that in equation (6) is proportional to

X(v,N)/X(1,N).

10
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NOISE-ONLY REFERENCE FOR NORMALIZATION

In this case, it is presumed that a set of L noise-only,
envelope-squared bin outputs {ZX}’ 1 < X <L, with the same (but
unknown) average level N as data {xn} under H, are available.
That is, the mean of each Zy is equal to N. This suggests an

alternative to processors (5) and (6) in the form
v, (11)

where v is a fixed threshold and Z(w,L) is a sample average for
the L noise-only samples {ZX} (see equation (7)). The parameter
u can be chosen to be equal to 1 or smaller, so as not to
accentuate large Zy values. Whereas large v in the numerator of
equation (11) accentuates (enhances) signal detection, a large
value of w in the denominator would tend to emphasize outliers in
noise-only set {ZX}' which is an undesirable effect. Small wu, on
the other hand, tends to suppress noise outliers in the set {zx}.
The value of ratio (11) does not depend on the absolute scale
of the average noise level N of data sets {xn} and {ZR}' A
common scaling will be canceled in the ratio (11). Also, the
case of L = » corresponds to the previous case of known average
noise level, since Z(w,») = £(y) N, where function f£(u) is
independent of N. Thus, a large noise-only data set is

desirable, if it can be achieved.

11
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The normalizer in equation (11) furnishes a baseline against
which other normalizers can be compared for detectability
performance. That is, the availability of a noise-only reference
is an intermediate situation between knowledge of the average
noise level N and no knowledge of N. In the latter case, N must
be estimated directly from the available data {xn}, without the
aid of any auxiliary set of noise-only data, such ag {Zk}’ In an
intermediate case where L < N, some combination of averages may

be in order for estimation of N, such as

o X(1,N) + (1 - «) 2(1,L) . (12)

12
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SELF-REFERENCE FOR NORMALIZATION

When the average noise level N is unknown, and only the data
set {xn} is available (which may or may not contain a signal),
approximate likelihood ratio processor (6) can be generalized to

the form

Zv, v o> ou . (13)

The ratio in equation (13) is dimensionless and is independent of
the actual absolute noise level N; that is, any scaling of data
set {xn} disappears in ratio (13). Thus, test (13) has constant
false alarm probability (CFAP) behavior; that is, for given
values of y, v, and N, it is possible to determine threshold v in
equation (13) so as to exactly realize a specified Pe without
knowledge of average noise level N. Of course, the fact that the
denominator of equation (13) is itself noisy causes a degradation
in performance relative to the alternative case of known level N.
If all the data values {xn} are equal, the ratio in equation
(13) is equal to 1. On the other hand, if only one data value is
nonzero, then the ratio is equal to Nb, where b = 1/u - 1/v.
These ratios are the lowest and highest values, respectively,

that ratio (13) can take on, regardless of the values of the data

{xn}.
When signal is present in M bins (of unknown location) in the
set of N search bins, the detection probability P3 of normalizer

(13) will depend additionally on signal-to-noise ratio S/N, as

13
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well as on M. However, a cautionary note should be made. For
known noise level, the optimum processor for M = N (that is,
fully occupied bins) utilized v = 1. But, for M = N with flat
unknown signal level and flat unknown noise level over the entire
search region, there is no distinction possible between signal
present versus signal absent. That is, a measurement {xn} could
have as likely occurred due to noise only as for signal plus
noise. There is no information in an overall increase of the
average power in data set {xn} when all N bins are occupied by
signal.

What this means is that the performance of any normalizer
must deteriorate as the number of bins M occupied by signal tends
to N. This is an inherent property that might be slowed by good

normalizer choice, but it cannot be stopped. 1In the limit, if

M = N, reliable signal detection is impossible.
At the other extreme, where M << N, normalizer (13) with
# = 1 can be expected to have good performance. One reason is

that equation (13) with v = 1 is exactly the form that the
approximate likelihood ratio (6) takes on (see equation (B-18)).
Another reason is that denominator X(1,N) in equation (13) will
be more heavily influenced by the larger number of bin outputs
that have only noise in them, N - M, than by the smaller number M
of bin outputs that (may) also have signal in them. Thus, a
reliable estimate of average noise level N is afforded by X(1,N)

when M << N.

14
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PERFORMANCE RESULTS

SMALL M VALUES

This subsection will consider small values for the number of
bins occupied by signal, namely, M = 1, 4, 16, and 64. The total
search size is N = 1024. The particular normalizer of interest
here is given by equation(13) with ¢ = 1, namely,

XR—ETE; > v (14)
There are extreme difficulties encountered in the analysis of
ratio (14). Two special cases (namely, v = @ and v = 2) are
analyzed in appendix C for the false alarm probability. The
v = » case is accomplished for general N, while the v = 2 case is
limited to just N = 2. Therefore, it is generally necessary to
resort to simulation to determine the corresponding ROCs of the
normalizers. These ROCs for equation (14) are collected in
appendix D.

For the case of M = 1, only one signal bin is occupied. ROCs
for v = », 3, 2.5, 2, and 1+ are given in appendix D (figures D-1
through D-5, respectively); the v = 1+ case will be explained
below. These simulations of equation (14) were conducted for
average noise level N = 1, without loss of generality; therefore,
average signal level parameter S in appendix D can be interpreted

as the SNR (in decibels) per bin.

15
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From these ROCs, it is possible to extract the required SNR
per bin to realize the standard operating point (SOP) Pe = 1E-3,
Py = 0.5, where Py is the detection probability when signal is
present. These SNR (dB) values are listed in table 1 below, not
only for M = 1, but for M = 4, 16, and 64 as well. There are two
numbers listed for each entry — for example, 12.8 over 12.77 for
M =1 and v = «. The upper number, 12.8, is the required decibel
level read directly from figure D-1; thus, it is the required SNR
(dB) for normalizer (14) operating in an unknown noise level.

The lower number, 12.77, is the required SNR (dB) for the PLP
operating with known noise level, and is obtained from reference
3, page 28 and appendixes A through C, or from reference 5, pages
53-80. The last column, OPT-B, lists the absolute lower bound on
the required SNR obtained from a banding procedure in reference

4, page 33, for known noise level.

Table 1. Required SNR (dB) for Normalizer (14)

v © 3 2.5 2 1+ OPT-B
u
1 12.8ab 13.0 13.2 13.8 16.0
12.77 13.2+% 13.8%* 14.8%* 21.53%* 12.75°
4 8.2 8.05 8.2 8.6 10.2
8.14 8.05 8.4% 9.3% 14.34% 7.88
16 5.55 4.75 4.75 4.95 6.05
5.28 4.4 4.6 5.1% 8.09% 4.35
64 4.0 2.2 2.0 2.0 2.6
3.12 1.0 0.75 0.8 2.03 0.71
a: appendix D b: reference 3, page 28 c: reference 4, page 33

16
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Some entries are marked with a *; in these cases, the
normalizer (with unknown noise level) actually requires less
signal power than the corresponding (same v) PLP with known noise
level. However, these signal levels are still larger than the
absolute minimum values for the OPT-B processor, listed in the
rightmost column. Also, the best PLP (with known noise level) at
each M always requires less SNR than the normalizer (with unknown
noise level).

For M = 1, the best normalizer is again v = «, that is, the
maximum of the data set {xn}, even though the noise level is
unknown. In fact, the SNR required for unknown noise level is
virtually identical to that required for known noise level,
namely, 12.8 dB versus 12.77 dB. For smaller values of v, the
required SNR increases above the minimum 12.8-dB level required
for v = «; however, it increases at a slower rate for the
normalizer than for the PLP. For example, at v = 2, the
normalizer can operate at the SOP with SNR = 13.8 dB, whereas
the PLP requires 14.8 dB, even though the PLP is given more
information, namely, knowledge of noise level N. This behavior
is a reflection of the fact that PLP v = 2 constitutes a
significant mismatch with the best PLP, v = ®, for this case of
M = 1, when the noise level is known.

For M = 4 (figures D-6 through D-10), the best power-law
value is v = 3, whether the noise level is known or not; in
addition, the required SNR at the SOP is the same (that is, 8.05

dB) for both cases. Furthermore, the use of PLP v = 2, with
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known noise level, performs somewhat poorer than the
corresponding normalizer with v = 2, namely, 9.3 dB versus 8.6
dB. This behavior continues as v - 1+.

For M = 16 (figures D-11 through D-15), the best power-law
value is v = 3 for known noise level, whereas it is v £ 2.5 for
unknown noise level. Nevertheless, the known-level case requires
less signal power, namely, 4.4 dB versus 4.75 dB. (This 4.4-dB
level is virtually at the optimum possible level of 4.35 dB.)

The loss associated with lack of knowledge of the noise level is
4.75 - 4.4 = 0.35 dB.

For M = 64 (figures D-16 through D-20), the best power-law
value for v is in the range 2 to 2.5. However, the loss
associated with unknown noise level has now increased to
2.0 - 0.75 = 1.25 dB. This is a manifestation of the fact that
as M increases toward N, the ability to determine the presence of
a flat-topped signal spectrum in white noise tends to zero, with
the case of M = N being absolutely impossible when the noise
level is unknown.

When v = 1 in equation (14), the left-hand side is equal to
1, independent of the data {xn}. However, if v is allowed to
approach 1 from above, a meaningful CFAP processor evolves. More

generally, in appendix E, the limit of normalizer (13), as g = v

from below, is derived. The end result is equation (E-5), namely,
v
N X b4 N
1 n n| > v
N ;=1 P/N ln[P/N] <V where P = L X - (15)
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This processor, with v now set equal to 1, is the one simulated
and tabulated in table 1 under the heading v = 1l+. Processor
(15) has CFAP capability regardless of the value of v, because
replacement of {xn} by {a xn} yields the same output, independent
of scale factor a.

In summary of this subsection, the losses associated with the
self-reference normalizer of equation (14) with N = 1024 at the
SOP are not significant for the number of signal bins M £ 64. 1In
fact, the performance of some of the normalizers in table 1 is a
little better than the PLP and is less sensitive to the actual

value of the power-law v that is used.

NUMBER OF SIGNAL BINS M = 256

This subsection deals solely with the case of M = 256 and
N = 1024. (There is no need to consider M = N = 1024, since that
is an impossible detection scenario, namely, flat signal in flat
noise of unknown level.) The normalizer of interest is now the
more general self-reference normalizer in equation (13), namely,
X(v,N) >
X(u,N) < V1 VK (16)
Again, in order to determine the ROCs of processor (16), it
is necessary to resort to simulation; these ROCs are collected
together in appendix F. A thorough search of pairs of values for

parameters v and gy was conducted in the neighborhood of the point
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where the best performance was obtained. The required SNR (dB)
to realize the SOP Pf = 0.001, Pd = 0.5 at each v,y pair was
extracted from the ROCs and is given in table 2 below. The two
regions v < gy and gy < 0 were also briefly considered, but yielded
less than P

ROCs that had P since this situation is totally

d £
unacceptable, these cases are not presented. The cases in table
2 where g = v are actually for the limiting normalizer of
appendix E (namely, equation (E-5)), where gy > v from below.
Observation of table 1 reveals that the pair v = 1.5, v =1
yields performance as good as any other combination. However,
switching to the more convenient pair v = 2, g = 1 loses only a

small fraction of a decibel and would probably be adopted in

practice. Also, reference to the PLP results for known noise

Table 2. Required SNR (dB) for Normalizer (16)

\( 3.0 2.5 2.0 1.75 1.5 1.25 1.0
u

0 0.3 0.2 0.3 0.7 1.5
0.5 0.2 0.0 -.08 0.12 0.5
1.0 0.4 0.15 -.08 -0.1 -0.15 -0.1 0.07
1.25 -0.05 -0.15 -0.15
1.5 1.0 0.5 0.15 0.0 -0.1
1.75 0.15
2.0 0.5
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level reveals that the two power-law choices, v = 2 and v = 1,
both have equal performance at M = 256 when N = 1024 (see, for
example, reference 4, figure 22).

The required values of SNR (dB) at the SOP for the PLP with
known noise level, for M = 256 and N = 1024, are given in
reference 3, page 28, table 1. For example, both v =1 and v = 2
require -4.0 dB, while v = 2.5 requires -3.6 dB. Both of these
decibel levels are substantially better than the best of the
results in table 2 above, namely, -0.15 dB. Thus, the self-
reference normalizer of equation (16) suffers at least a 3.85-dB
degradation when such a large fraction of the search space is
occupied by signal, that is, 256 bins out of 1024. This does not
mean that equation (16) specifies a poor processor; rather, it
means that the additional lack of knowledge of the average noise

level may result in permanent and irretrievable losses.

NOISE-ONLY REFERENCE FOR NORMALIZATION

In an attempt to determine whether the losses above are
irretrievable or not, the performance of a noise-only reference
for normalization was investigated, namely, processor (11) for
M = 256 and L = N = 1024:

X(v,N) >
Z(u,L) < V" (17)
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Size L could be larger or smaller than N; L = N is used here,
both for convenience and for a direct comparison of results with
the alternative denominator X(w,N) used earlier in equation (16).

The ROCs for equation (17) with w = 1 are presented in
appendix G. The required values for SNR (dB) at the SOP are
listed in table 3 below for five values of v. The smallest
required signal level of -2.7 dB is achieved for v = 2; this
level is 1.3 dB poorer than the -4.0-dB SNR required for the
corresponding v = 2 PLP operating in a known noise level (see
reference 4, page 33). This loss of 1.3 dB for normalizer (17)
is very reasonable when it is considered that, despite the lack
of knowledge of the average noise level, the specified false
alarm probability of 0.001 is guaranteed by processor (17) with
u = 1.

An additional case for normalizer (17) was numerically
investigated, namely, ug » 0+. Recall from equation (9) that the
denominator of equation (17) is then the geometric mean of the

available noise-only data {zx}. The corresponding ROCs are

Table 3. Required SNR (dB) for Normalizer (17) with g =1

v 1 1.5 2 2.5 3

SNR (dB) -2.3 -2.6 -2.7 -2.65 -2.4
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presented in appendix G, and the required values for SNR (dB) at
the SOP are listed in table 4 below.

The best case for a geometric-mean reference requires
SNR (dB) = -2.2 dB, which is 0.5 dB poorer than the best case for
the arithmetic mean in table 3. These results were obtained for

M = 256 and L = N = 1024.

Table 4. Required SNR (dB) for Normalizer (17) with g = 0+

v 1 1.5 2 2.5 3

SNR (dB) -1.6 -1.9 -2.15 -2.2 -2.15
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SUMMARY

The possibility of modifying the power-law processor so that
it can maintain its high-quality detection capability in a noise
environment of unknown level, and yet realize a specified false
alarm probability, has been investigated for a number of
normalizers. It has been found that if the number of bins, N,
occupied by signal is small relative to the search size N, the
additional signal-to-noise ratio required to maintain the
standard operating point is not significant. However, if M is of
the order of N/4 or larger, the degradations begin to become
substantial. A partial remedy to the inherent losses caused by
unknown noise level is to use a noise-only data reference, if
available. However, eventually, as M increases and tends to N,
the detection situation becomes progressively more difficult,
finally becoming impossible. This is not a limit of the power-
law processor, but, rather, of the fact that detection of a white
signal in white noise of unknown ievel is a theoretical
impossibility.

Some of the normalizers come very close to the power-law
processor performance, despite an unknown noise level. For
example, for N = 1024, M = 16, and v = 3, the normalizer requires
a signal-to-noise ratio of 4.75 dB, whereas the power-law
processor requires 4.4 dB, a difference of only 0.35 dB.
Furthermore, the absolute optimum requirement by the banding
processor that knows and utilizes M, S, and N is 4.35 dB. It is

quite remarkable that the normalizer is only 0.4 dB poorer than
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this optimum level, considering that the normalizer is completely
ignorant of M, S, and N.

There are cases where the normalizer outperforms the power-
law processor when the same value of v is used for both.

However, if the best normalizer is compared with the best
power-law processor, this never happens; here, best is meant in
the sense of the optimum values of v for maximum detection
probability of each processor.

It appears that the performance level achieved by the
normalizer is less sensitive to the exact value of v used for
signal detection than is that of the power-law processor. For
example, at M = 64, the three normalizers with v = 2, 2.5, and 3
all require a signal-to-noise ratio of approximately 2 dB. Also,
this requirement is only 1.3 dB poorer than the optimum level of
0.71 dB.

Some additional alternatives to the general sample average in
equation (7) were considered for use in the denominator of
normalizer (13) instead of X(w,N). The first was the median of
the measured data {xn}; the second was the sample arithmetic mean
of a central section of the ordered random variables
xi > X5 2t 2 x&; and the third was the sample geometric mean
of a central section of the ordered random variables. Despite
the size and location of the sections, none of these modified
normalizers utilizing ordered data outperformed the normalizers

considered here. Thus, it appears that the normalizer with

v =2 and ¢ = 1 performs about as well as is possible.
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APPENDIX A — OPTIMUM PROCESSOR FOR COLORED NOISE

Let Hn be the mean noise level in bin n. Then, the joint
probability density function governing the observation {xn},

1 < n < N, under the noise-only hypothesis Hy is

N -u
1 n
po(ul,...,uN) = n|=l|{—-l\z exp[—-g—n]} for all un > 0 . (A-1)

on the other hand, under hypothesis Hl’ when bin n is also
occupied by the m-th signal with mean signal level Sn the

probability density function of this particular bin output is

mn

1 “Yn _
E——I—ﬁ; exp[s n] =2, exp(- a__ u.) for u > 0, (A-2)

S, + XN

——-m —

where the strength parameters are defined as

a = s r N for 1 {m<M, 1<n<iN. (A-3)

This leads to the joint probability density function

governing the observation {xn} under hypothesis Hy in the form
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the "no two equal" qualifier under the summations means that none
of the integers j,k,...,X can be equal to each other, while the
slash on the product indicates that n # j,k,...,X is required.
There are M summations in equation (A-4). The constant Ky is
given by Kg = N(N - 1)---(N + 1 - M), since none of the M
occupied signal bins can overlap. This quantity Ko is also the
total number of terms in the M summations in equation (A-4), all
of which possibilities can occur with equal probability 1/K0.

The likelihood ratio for observation {xn}, 1 <{n KN, is

given, upon use of eqguations (A-1) and (A-4), by the random

variable

Pp(xg,eenrxy) 1 N N N N. Ny,
LR = = -——: : o o 0 : ] X e
Po(Xpre-evxy) Ko 23 £ x=1 51 * Ny 5 + Ny
no two equal
Ny
X 5+ N, expuy g x5 + Wy Xy 4 e 4 YR %) (A=5)

where the weights have been defined as

1 §m
\" = =

—mn N S_ + N
—n —m —n

for 1 {m <M, 1 <n<N. (A-6)

Compare the form of this weighting with that in reference 7, page
112, equation (420), or page 488, equation (78). The leading

factor in w l/gn, normalizes (whitens) the noise levels,

mn’
while the remaining factor contributes a signal-to-noise ratio
emphasis.

The required data processing in equation (A-5) indicates that

the following procedure is to be used: first assume that signal
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1 is in bin j and weight that output xj by Elj’ also, assume that
signal 2 is in bin k and weight that output Xy by Yoy then
continue through signal M, assumed to be in bin X. Next, sum
these particular M weighted-data quantities and exponentiate.
Finally, sum over all the KO disjoint possibilities for

j,k,...,X, using the M additional scale factors {gn/(§m + N )},

n
as indicated in each term of equation (A-5).

If the noise is white across the search band (that is,

N, =N for1l

IA

n < N), then equations (A-5) and (A-6) can be

simplified to

1 N N N
LR = >— . X
Ky S + N 5, + N §ﬂ + N
N N N
X z:: z:: oo Z:: exp(w X. + W, X, + c 4+ W X ) ' (A-7)
=1 k=1 = 1 2 7k M X
no two equal

(A-8)

+h
o
"
| mad
IA
3
A

=

This result for the likelihood ratio is a slight generalization
of reference 5, equations (4) and (7), to nonunity noise levels,
N, per bin.

In addition, if the signal levels per bin are all equal,

= 5 for 1 < m < M, then the weights {w_} are all equal to

ftn

t<
i

(A-9)

| 2=
[t

+
| =
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APPROXIMATION TO GENERAL LIKELIHOOD RATIO

The exponential in the general result of equation (A-5)
greatly accentuates the largest of the weighted data terms, which
tends to dominate the leading scale factors. Therefore,
concentration is on these data-dependent terms in this equation.

If each exponential in equation (A-5) is expanded in a power
series, there will be linear terms, quadratic terms, cubic terms,
etc. The linear terms will contain random variable Xq for
numerous combinations of indexes j,k,...,R. As a result, X will
be weighted by a linear sum of {Eml} for 1 {m { M. Similarly,

data value X, will be weighted by a linear sum of {Emz}. Thus, a

reasonable approximation to the data processing of the linear

terms in the expansion of equation (A-5) is, using equation

(A_6)r
) R
Z, = X w = - _—, (A-10)
1 n=1 n m=1 mn n=1 En m=1 §m + gn

With regard to the quadratic terms resulting from the
expansion of equation (A-5), observe that random variable x% will
be weighted by a sum of terms involving {yil}. Therefore, an

approximation to the quadratic terms is given by

1 s
S [—S—ﬁ] . (A-11)
—m —n

Finally, for the general v-th power, a similar argument leads

to consideration of the following power-law processor:
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n S
—m
g [g—;—-i-—_N_—] . (A-12)

The choice of the best value of power-law v depends on the exact
values of the parameters in the application of interest.

Notice that if the noise is white across the search band,
that is, ﬁn =N for 1 < n <N, the inner summation on m becomes
independent of n, regardless of the value of power v. Therefore,
this quantity, along with the N, denominator factor, can be
removed from the outer summation on n, leaving the standard

AY

power-law processor, which simply adds up all the data values X

In fact, the unlikelihood of knowing all the parameters
required for implementation of the (nonwhite) processors in
equations (A-10)-(A-12) forces the adoption of just such simpler
procedures in practice. Thus, one possibility, in the absence of
signal level information, is to replace the sum on m in equation
(A-12) by a constant (independent of n), ending up with the

scaled (whitened) power-law processor

Y

xn
2, =Y [ﬁ— : (A-13)

N
n=1 \-n

Alternatively, since all the actual noise levels {Hn} are also

likely to be unknown, the standard power-law processor,
N v
z, = %;% I (a-14)

which requires no knowledge at all of signal or noise levels, can
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be used.

A problem with all these processors is that the noise levels
per bin are unknown in practice. Therefore, the actual false
alarm probability realized in operation is unknown. Although the
ROCs may indicate that good performance is achievable, the actual
operating point will be unknown. Changing the decision threshold
may slide the operating point along a good ROC, but the precise
location being utilized will be unknown. The only way to
determine and set the false alarm probability is to estimate the

noise level and use it in a modified processor form.
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APPENDIX B — DERIVATION OF APPROXIMATE BAYESIAN PROCESSOR

This appendix relies heavily upon the Bayesian methods of
deriving the optimum processor, as outlined in reference 6,
chapter 2, where the use of prior densities is heavily propounded
for cases of insufficient knowledge of the pertinent parameters
of the signal processing problem of interest. Also, for future

reference, frequent use of the integral result

I dx x-l_a exp(-B/x) = for « > 0, 8> 0 (B-1)

will be made.

AVERAGE OF THE NOISE-ONLY JOINT PROBABILITY DENSITY

Consideration here is limited to the case of equal (unknown)
noise levels in each bin, that is, N, =2 for 1 < n < N in
equation (13). There follows the conditional joint probability

density function

po(ul,...,ung) = E_N exp(-T/a) , T = Uy o+ occe Uy, (B-2)

where the unknown noise level a is considered a random variable.
The prior probability density function for the noise level

(see reference 6, section 2.4) is taken as

py(a) = A g”_l for a; < a < a, , VT
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Here, a; and a, are hyperparameters (reference 6, page 11).
Choosing ¢ = 0 results in Jeffrey’s prior (reference 6, equations
(2.14) and (A.3)); however, it is found that ajr 2y and g need
not be specified precisely here.

The unconditional joint density under hypothesis Hy is

po(ull---luN) = I dé PO(_a_) po(ull--~luN|§) =

)
= A J da g”—l-N exp(-T/a)

a

Il
o
O Gy 8
o}
|
|
®
>
o
|
&
N
|
]

1

for N > u . (B-4)

This approximation to the integral for broad hyperparameters

ay and a, is used for the sake of simplicity in the end result;
see also reference 6, page 21, as well as equation (2.28) with
equation (2.14). The result in equation (B-4) will be used in

the denominator of the likelihood ratio.

AVERAGE OF THE SIGNAL-PLUS-NOISE JOINT PROBABILITY DENSITY

As above, consideration here is limited to the case of equal
(unknown) signal levels in each of the M occupied bins; that is,
§m = b for 1 {m < M in equation (15). Then, the general j,k,...

term in equation (15) becomes, upon use of equation (15) with

§n=_a_'
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K1 Tix 1
Py upre--ruylask) = == e (- 515) 7w o (- —3

(B-5)

where Kl = l/K0 is a constant (independent of a, b, and {un}) and

Tjk =T

1}
o
+

k... j uy + e+ Uy - (B-6)

This latter sum contains M terms. The complete joint conditional

probability density function follows from equation (15) as the

sum over all j,k,...,X, and is denoted by j.k,.. according to

K b T.
1 = ik
p,(u;,...,u.la,b) = — exp(-T/a) exp[ ] .
1l N aV Y (a4 b)Y . T lata + b)

(B-7)
At this point, the latter exponential in equation (B-7) must
be simplified in order to make any analytic progress. In keeping
with the earlier approach in reference 5, pages 13-22, the power-
law approximation exp(x) = K, x is again used, where power v > 0
is yet to be chosen. Then, the sum in equation (B-7) becomes
b K, b’

2 = Z: v 2
T., = . . (B-8)
a¥(a+ bV 9. 3 ¥ @+ Y

The power-law approximation allows the separation of the
variables a and b from the arguments {un}, and is the crucial
step in this derivation. Substitution of equation (B-8) in
equation (B-7) yields the approximation for the probability

density function as
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K, K, Ev exp(-T/a)

p,(u;,...,u.la,b) = - z
1'71 N aN M+v (a + 9)§+v v

A prior probability density function is now assumed for the
signal level, which is of the same form as was taken for the

noise level in equation (B-3), namely,

p(b) =B b forb <b<b,, B-= ;;—l—;; . (B-10)

Again, vy = 0 corresponds to Jeffrey’s prior (reference 6,
equation (2.14)) for the signal level. The unconditional joint

density under hypothesis Hy is given by
pyug,---ouy) = [[ da db po(a) py(k) pylug, ... uyla,b) . (B-11)

When equations (B-9) and (B-10) are employed in equation

(B-11), the integral over b takes the form

b

=2 b ® bv+y—l
-1 = - 2
j db B b” = J db B -
; = = (a + 2)§+v . = (a + b)M+\>
1 a 2
® v+y—1
— Y- —
=B a' a} dx x M = B K3 a¥ u for v+ vy>0, M> y. (B-12)
- 1+ x)="" - -
0 (
Here, Ky = I'(v+y) T(M-v)/T(M+v). The remaining integral on a
then yields
a2
K. K, exp(-T/a)
- wu-1 yv-M 1 =
pl(ul,...,uN) = J da A a B K3 a aN_M+V Zv
a; =
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1 By B3 TN+V—ﬂ-Y EV for N+ v -y - v > 0. (B-13)

LIKELIHOOD RATIO

The ratio of probability density functions under hypotheses

Hy and Hy follows from equations (B-13) and (B-4) as

Y] AV
2 T. 2 (u. + u, + =+ + U,)
Pylugr---vuy) By fi 3k 3 K A
po(ul,...,uN) oY VY N v-vy !
(= uy)
n=1 (B—14)

where all irrelevant constants have been dropped and equations

(B-8), (B-6), and (B-2) were used. With a given data set of

random observations {xn} for 1 < n { N, the likelihood ratio is

Y
pl(xl’ "’XN) % (xj X o+ e 4 xx)
= [+ 4 -
LR (% x.) — N o ’ (B-15)
PO 17 ¥y (:x] Y
n=1 n

where each sum in the numerator contains M terms.
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APPROXIMATION TO LIKELIHOOD RATIO

If the approximation used for the simplification of the
exponential in progressing from equation (B-7) to (B-8) were
taken according to power law v = 1, the numerator of equation
(B-15) would consist of a scaled version of the linear sum of all
the data {xn}.

On the other hand, if v were taken as 2, there would be a sum
of all the squares of the data and a sum of all the cross-
products of the form xj Xy for j # k. Since all possible cross-
products appear with an identical scale factor (reference 3, page
10), a reasonably good approximation to their sum is a scaled
version of the sum of the squares of the data. Thus, the overall
approximation to the numerator of equation (B-15) for v = 2 is
simply a scaled version of the sum of the squares of all the data

{x

n}'

For v = 3, a similar argument leads to the approximation of
the numerator of equation (B-15) by a scaled version of the sum
of the cubes of all the data. This is believed to be a rather
good approximation, especially for large N, which is the total

number of data points. The end result, for general power-law v,

is the approximate likelihood ratio adopted here, namely,

(B-16)
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It is very important to observe that equation (B-16) does not
require knowledge of the signal level, nor does it utilize any
information about M, the number of bins occupied by signal.
However, there is one significant drawback of the processor
form in equation (B-16). Even when noise alone is present, the
level of the right-hand side varies with the noise level to the ¥y
power, which is unknown. Thus, it is generally impossible to
choose a threshold with processor (B-16) that has a specified
false alarm probability, when the actual noise level is unknown.
However, suppose that signal parameter value y = 0 is assumed
in equation (B-10). Then, the prior probability density function

for the signal level S takes the particular form

1
p,(b) = B/b for b, < b < b, , B = s—rr—0 (B-17)
1 1 2 ln(bz/bl)
which is Jeffrey’s prior (reference 6, equations (2.14) and
(A.3)). 1It corresponds to a uniform distribution over different

scales; that is, decibel measure log(S) is uniformly distributed
(reference 6, page 11). This is an example of a convenience
prior (reference 6, page 12) adopted for purposes of simplifying
the processor form.

When v = 0 is assumed in equation (B-16), the approximate

likelihood ratio test on data {xn} takes the final form

N N 1/v
v v
%;i *n > [;L:i xn) >
Cf%: 3 < v o, or Z%: < v o, (B-18)
X ) x
n=1 n n=1 n
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where v is a fixed threshold. For noise alone, the value of the
left~hand side of test (B-18) is independent of the actual noise
level, since a common scalar on the data {xn} cancels out of the
ratio, regardless of power-law v employed. Thus, a prespecified
false alarm probability can be realized by proper choice of v,
which depends on N, v, and the noise statistics, but not its
absolute level. Notice also that test (B-18) is independent of
the noise probability density parameter ¢ in equation (B-3), as
well as the hyperparameters ajr sy bl’ and b2' Of course,
power-law value v can and should be varied to realize optimum
detection performance.

When all the conditions that the parameters have to satisfy
in the above derivations are collected, they can be simply stated

as

N > u , v>20, M >0 . (B-19)

In general, these restrictions are easily satisfied.
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ALTERNATIVE DERIVATION OF‘p1

The power-law approximation made below equation (B-7) can be
deferred and the likelihood ratio can be evaluated in a more
accurate form. The unconditional joint probability density
function is given by equation (B-11), with the integral limits
dictated by equations (B-10) and (B-3). The integral on b is
convergent at the lower limit bl for any y. However, when the
approximation is made to extend the lower limit to 0, the new
integral only converges for y > 0; this latter restriction is
artificially introduced by the approximation procedure and should
be ignored when possible.

If the substitution x = b/(a + b) is made in the b integral
and if reference 8, equation (3.383 1), is used, the x integral
can be carried out to yield Y_l 1F1(Y;g;Tjk/g). Then, by making
the substitution t = Tjk/g in the resultant a integral and using
reference 8, equation (7.621 4), the t integral can also be
evaluated to yield T”+Y-N (N - y - v) 2F1(Y’N - u - y;g;Tjk/T).

The end result is

. W = K, AB T'(N - u - v) Y F, (v,N M
pl preccrUy! T TN—,U—'Y jk 291 Y - M - YI_ITjk/T)I
(B-20)
and the ratio of densities is
p; K BTN -w-vy) _
By T v o a— T JE-ZFl(Y'N - 0= YiMTL/T) . (B-21)
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The likelihood ratio is proportional to

Y .
LR « T J}k: PP (VN = = MG /T) (B-22)

where random variables
T=3) , X Ty = X5 + X +octc o+ Xp o (B-23)

Unfortunately, practical realization of this processor in
equation (B-22) is impossible due to the inordinate number of

terms required. Expansion of 2Fq yields

® (y). (N - p - v) T., .V
EOMNEr

IR = T ) — S L
v=0 =V .
The fundamental building block of this optimum processor is
z T;k/TV_Y, which is exactly the right-hand side of equation
(B-15). Thus, the same basic practical processor results by
making a power series approximation here to 2F1 instead of to the
exponential in equation (B-7). The additional discussion and
manipulations following equation (B-15) apply directly here as
well, and equation (B-18) is the recommended final processor

form, where power-law v should be chosen for the best performance

at whatever N, M, and signal and noise levels are of interest.
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APPENDIX C — ANALYTIC DERIVATIONS OF FALSE ALARM PROBABILITY

NORMALIZER (14) FOR v = @, S = 0

It is presumed that random variables {xn} are independent and
identically distributed with common probability density function

exp(-u) for u > 0. Order these N random variables such that

(C-1)

[
\Y
M
v
.
v
el

The joint characteristic function of the latter random variables

is (reference 2, eguations (B-18) and (B-13))

f(il,.--,EN) exp(lilxi 4+ e + lENxI(I) =
al 1
= -I_r l i(al 4+ e e 4+ En)/n

n=1

. (C-2)

Now, consider normalizer (14) with v = < and denote the ratio

by r. Then,

- X(®,N) _ max(xl,...,xN) _ N xq (co3)
TX(ILN) T (xg oo+ /N x] 4 e b oxL ]

Observe that 1 < r < N. The exceedance distribution function of
r is
Er(v) = Prob(r > v) = Prob(g > 0) , (C-4)

where auxiliary random variable g is defined as

q=N xi - v(xi + e+« + x') = (N-v) xi - v(xé + e+ + x') . (C-5)
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The characteristic function of random variable q is

fq(i) = exp(i&q) = exp{i&(N - vIX] - 1&v(xS + --c + x[)}

N
1
= f(i(N - V):"EV,--»,*EV) = N . (C—6)
TG - 1 e
n=1
The mean of g follows immediately as
N N
g-r Yoo o). (c=7)
n=1 n=1

The exceedance distribution function of r is (reference 9,

eguation (5))

E (v) = Prob(g > 0) =

==
il

Im{f (&)} =

ey

where contour C is the real {-axis, except for a downward detour

J—% , (c-8)
C

at the origin. The function fq({) in equation (C-6) has poles at

§ =1 ——— for 1 < n <N . (C-9)

Let integer K = INT(N/v), which is the largest integer less than
or equal to N/v. Then, K of the N poles in equation (C-9) lie
below the real axis, while the remainder are above the real axis.

Therefore, for 1 < v < N, equation (C-8) yields

K £ (&) K N-1

E (v) = - 7 Res| i8] = T o (1 - k—I‘g] , (C-10)

where
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n k-1 (N
o = T T(F2g) = 1) &) - (C-11)
n=1
n¥k
Although equation (C-11) is an alternating seguence, the series
in equation (C-10) decays quickly with k and has proven

numerically useful, even for values of N as large as 1024.

Substitution of equation (C-11) yields the final result

E_(v) = Z%: D) (2 - EXJN_l for 1 < v < N (c-12)
r - ] k N = = :
As checks on this result, equation (C-12) yields Er(N) = 0 and
E (1) = 1, as required.

NORMALIZER (14) FOR v = 2, N = 2, § = 0

The square of normalizer (14) for v = 2 and N = 2 is given by

Xz + x2
r =2 —21 2 5 Z woe v . (Cc-13)
(xl + x2)

The variable r can only take values in the range from 1 to 2.

Let random variable R = xz/xl. Then, r is greater than w when

2
2 1+ R >w , or R2 - 2R o
2-w

5 + 1> 0. (Cc-14)
(1 + R)

This event occurs when R < R1 and when R > RZ' where

5 1
W = 2(w - 1)7 oW+ 2(w - 1)7
Ry = 7~ w r Ry = 2 - W : (€-15)
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The exceedance distribution function of r is

Pr(r > w) = Pr{(R < Rl) + Pr(R2 < R) =1 - Pr(R > Rl) + Pr(R > R2).
(C-16)
But since
- -b -a _
Pr(R > u) = Pr(x2 > xlu) = j db e J da e =T+ u for u > 0 ,
0 bu (C=17)
it follows that
1 1
E (w) =1 - + =
r 1 + Rl 1 + R2
l+(w-—l)1/2 1—(w—l)1/2 e
=1 - > + > =1 - (w - 1)7* (C-18)

for 1 < w

IA
N
.
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APPENDIX D — RECEIVER OPERATING
CHARACTERISTICS FOR NORMALIZER (14)

The normalizer of interest here is

X(v,N) >

X(1,N) < 7 !

which is equation (14) from the main text. All the ROCs in this
appendix are for g = 1 and search size N = 1024. The values of
power-law v range over «, 3, 2.5, 2, and 1, while the values of M
(the number of signal bins) range over 1, 4, 16, and 64. The
simulations were done for noise level N = 1; therefore, the
signal level S (dB) labeled on each curve can be interpreted as
the signal-to-noise ratio per bin in decibels. The number of
independent trials of normalizer (14) that are utilized for each
ROC are indicated in each case. The abscissa and ordinate
labelings on figures D-2 to D-20 are identical to those indicated

on figure D-1.
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APPENDIX E — LIMITING NORMALIZER AS g > Vv

The general self-reference normalizer is given by equations

(13) and (7) as

N 1/v
1
F = =)
X(v,N) _ n=1 (E-1)
N 2:: xn

Let 4 = v - £, where ¢ > 0. Then, an expansion of equation (E-1)

yields

X(v,N)
X(u,N)

e(L
~ 1 + ;5(5 - ln(P)) as € » 0 , (E-2)

where

N N
L=) x: 1n(x:) , P =) | x: . (E-3)

n=1 =1

]

Therefore, the dominant data-dependent term in equation (E-2) is

L % - (*a
F - ln(P) = E —F ln[—P] . (E"4)

This processor obviously has a constant false alarm probability

capability, regardless of the value of v.

v

However, since 0 < X

< P, every term in the sum is negative.
The most negative value that the sum in equation (E-4) can take
on is -1n(N), when all the x are equal. Therefore, the

processor that is adopted becomes
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X XX
P BN ln[i;/—N] ' (E-5)

N
n=1

S <

lIn(N) + L

P~ In(P) =

2~

which always has positive outputs. The most positive value of
equation (E-5) is 1ln(N), attained when all x are zero except
one. This latter processor (E-5) has a constant false alarm

probability capability since replacement of {xn} by {a xn} yields

the same output, independent of scale factor a.
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APPENDIX F — RECEIVER OPERATING
CHARACTERISTICS FOR NORMALIZER (16)

The normalizer of interest here is

which is equation (16) from the main text. All the ROCs in this
appendix are for M = 256 and search size N = 1024. The values of
power—-law v and averager parameter y range over a variety of
values in the neighborhood of v = 2 and v = 1. The simulations
were done for noise level N = 1; therefore, the signal level

S (dB) labeled on each curve can be interpreted as the
signal-to-noise ratio per bin in decibels. The number of
independent trials of normalizer (16) that are utilized for each
ROC are indicated in each case. The abscissa and ordinate
labelings on figures F-2 to F-30 are identical to those indicated
on figure F-1. The ROCs for processor (16) are ordered in such a
way that the better a particular pair (v,u) performs, the earlier

it is listed in this appendix.
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APPENDIX G — RECEIVER OPERATING
CHARACTERISTICS FOR NORMALIZER (17)

The normalizer of interest here is

which is equation (17) from the main text. All the ROCs in this
appendix are for M = 256, search size N = 1024, and reference
size L = N = 1024. The values of power-law v range over 1, 1.5,
2, 2.5, and 3, while averager parameter u takes on the two values
g =1 and ¢ = 0+. In t+his latter case, 2(w,L) is the geometric
mean of noise-only reference data {ZR} (see equation (9)). The
simulations were conducted for noise level N = 1; therefore, the
signal level S (dB) labeled on each curve can be interpreted as
the signal-to-noise ratio per bin in decibels. The number of
independent trials of normalizer (17) that are utilized for each
ROC are indicated in each case. The abscissa and ordinate
labelings on figures G-2 to G-10 are identical to those indicated

on figure G-1l.
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